The rapid development of web technology has brought new problems and challenges to the recommendation system: on the one hand, the traditional collaborative filtering recommendation algorithm has been difficult to meet the personalized recommendation needs of users; on the other hand, the massive data brought by web technology provides more useful information for recommendation algorithms. How to extract features from this information, alleviate sparsity and dynamic timeliness, and effectively improve recommendation quality is a hot issue in the research of recommendation system algorithms. In view of the lack of an effective multisource information fusion mechanism in the existing research, an improved 5G multimedia precision marketing based on an improved multisensor node collaborative filtering recommendation algorithm is proposed. By expanding the input vector field, the features of users’ social relations and comment information are extracted and fused, and the problem of collaborative modelling of these two kinds of important auxiliary information is solved. The objective function is improved, the social regularization term and the internal regularization term in the vector domain are analysed and added from the perspective of practical significance and vector structure, which alleviates the overfitting problem. Experiments on a large number of real datasets show that the proposed method has higher recommendation quality than the classical and mainstream baseline algorithm.
Loading....